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Abstract. We investigate the optimization of Gaussian basis sets for relativistic 
calculations within the framework of the restricted Dirac-Hartree-Fock (DHF) 
method for atoms. We compare results for Rn of nonrelativistic and relativistic 
basis set optimizations with a finite nuclear-size. Optimization of separate sets for 
each spin-orbit component shows that the basis set demands for the lower j 
component are greater than for the higher j component. In particular, the Pl/2 set 
requires almost as many functions as the sl/2 set. This implies that for the 
development of basis sets for heavy atoms, the symmetry type for which a given 
number of functions is selected should be based on j, not on t ~, as has been the case 
in most molecular calculations performed to date. 
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1 Introduction 

There has been increasing interest in the past fifteen years in finite basis set 
approaches to the solution of the Dirac-Hartree-Fock (DHF) equations for 
molecules I-1-12]. The computational demands of finite basis molecular DHF 
calculations are large, due to the necessity of providing a basis set for the small 
component as well as for the large component of the wave function. In terms of 
atomic symmetries, the small component basis requires functions which have one 
more and one less unit of angular momentum than the corresponding large 
component functions; thus basis sets for DHF calculations may be approximately 
four times larger than the corresponding basis sets for nonrelativistic calculations. 
For atoms, where the spherical symmetry can be fully exploited, this is not a great 
difficulty, but for molecules it becomes critical, as the number of two-electron 
integrals required increases as the fourth power of the number of basis functions. 
Since relativistic effects are most important in heavy atoms, a large number of basis 
functions will be needed to describe the core region where relativistic effects 
dominate. It is therefore imperative to minimize the number of basis functions 
required in DHF calculations, so that the range of problems which can be tackled is 
not unduly restricted. 
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There are several issues to be considered when discussing adequacy of basis sets 
for DHF calculations. The first has been alluded to, namely, the size of the basis set. 
It is well known that fully optimized basis sets are smaller than even-tempered 
basis sets for a given accuracy in the total atomic energy, and smaller than the 
well-tempered sets of Huzinaga [-13-15], which mimic the fully optimized sets more 
closely. A second issue is that unmodified nonrelativistic basis sets are deficient in 
the core region, particularly for Pl/2 spinors [16, 17]. The importance of a high- 
quality description of the core region is also evident from the work of Schwarz et al. 
[18] which shows that for all orbitals the relativistic effects have their chief 
contributions near the nuclei. For "normal" heavy elements the addition of a few 
extra functions remedies the deficiency - but it is likely that re-optimization of the 
basis will obviate the necessity for the extra functions. For superheavy elements 
there are computational indications that simple addition of functions without 
reoptimization is insufficient [19]. It may be argued that the core region is 
unimportant chemically, and a small deficiency in the core may be tolerable [20], 
but there is also the possibility of spurious results due to the contribution of a basis 
function on a neighboring center to the core deficiency, resulting in a large basis set 
superposition error. A third issue is that even in the outer shells, relativistic effects 
can cause significant change in the positions of nodes and antinodes. Therefore 
a function which describes part of a maximum in a nonrelativistic calculation may 
be of no value in a relativistic calculation because its position is in the region of 
a node. A fourth issue is that in making comparisons of nonrelativistic and 
relativistic calculations, equivalent calculations should be done in equivalent basis 
sets [20]. If a non-relativistic calculation is done with a fully optimized basis set~ the 
relativistic calculation should also, strictly speaking, be done in a fully optimized 
basis set. The issue of deciding what is an equivalent basis set is a difficult 
one because of the different requirements of the Dirac and Schr6dinger Hamil- 
tonians. In general, the best nonrelativistic basis sets are optimized to obtain 
similar truncation errors in each of the angular spaces. When using the Dirac 
Hamiltonian, the angular spaces are defined by the kappa quantum number, and 
the requirements for spaces of different kappa but the same orbital angular 
momentum can be quite different. Although the separate optimization of functions 
for the spin-orbit components of a shell would not lead to efficient basis sets, it is of 
interest to determine how different the requirements of the spin-orbit components 
are. 

Thus far, few attempts at relativistic basis set optimization for atoms have been 
published. In the work of Mark [-21], Lee et al. [-22] and more recently of Minami 
and Matsuoka [-23], exponents were optimized by fitting the basis to numerical 
atomic DHF functions. Mark's optimizations were limited to the atoms He to Ne; 
Lee et al. optimized Slater basis sets for highly-charged U, but not for the neutral 
atoms, which has been done by Minami and Matsuoka for the elements Rn-Pu as 
well as for some of the positive ions. Ishikawa and coworkers showed that the use 
of a finite nucleus instead of a point nucleus allowed for more compact basis sets 
[-24] and also eliminated problems with basis set balance close to the nucleus [-25]. 
Visser et al. [-26] performed a full relativistic optimization of exponents for the 
one-electron atoms Sn and U with and without a finite nucleus, showing that the 
use of a finite nuclear radius significantly decreased the maximum exponent. 
(This is a general feature of finite nucleus models and not peculiar to relativistic 
calculations.) In the work of Matsuoka and Huzinaga [-27], the parameters of 
well-tempered sets were optimized for He to Ne and Ar at the DHF level. They 
found that the nonrelativistically optimized well-tempered sets gave essentially 
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identical energies, and concluded that for atoms up to Xe, nonrelativistic basis sets 
were adequate. In the past few years, Malli et al. [28] have obtained universal 
Gaussian basis sets which are essentially even-tempered sets; the optimization is 
presumably limited to the choice of the range and density of the basis set, though 
no explicit mention of this is made. Chandra and Hess [29] have recently 
performed an energy-based basis set optimization on the Au atom with the 
Douglas-Kroll-transformed Dirac Hamiltonian truncated at second order in 
the external potential. They found considerable changes in the core exponents, and 
the necessity for a finite nucleus became apparent in their work. 

In order to undertake a more systematic exploration of energy optimized 
Gaussian basis sets for relativistic calculations we have developed a DHF program 
using a mixed analytic and numerical approach to exponent optimization. In the 
next section we provide a brief description of the program and the underlying 
principles. Some of the issues involved in the selection and optimization of a basis 
set are discussed in Sect. 3. The Rn atom is used as a test case for demonstrating the 
effect of the various approaches to energy optimization of relativistic basis sets, and 
the results are presented in Sect. 4. 

2 Theory and implementation 

The energy-optimization of the exponents of a basis set in relativistic calculations 
depends on the existence of some kind of bound on the energy, so that it may be 
minimized without fear of variational collapse. In many places it is asserted that 
since the Dirac Hamiltonian is unbounded from below the possibility of collapse is 
always present. However, Grant  [30] has shown that there is a bound on the 
Dirac-Fock energy in a finite basis, which is the minimum of the potential energy, 
so that collapse into the negative continuum cannot occur. This is not a very useful 
bound for the purposes of energy optimization. In fact, it has been pointed out by 
Talman [31] that the Dirac-Fock energy is a minimum in the space of large 
component parameters, but a maximum in the space of small component para- 
meters. Equivalently, in a 4-spinor basis, it is a minimum in the space of the 
parameters of the positive energy states, but a maximum in the space of the 
parameters of the negative energy states. This means that the orbital Hessian has as 
many negative eigenvalues as there are negative energy states, and the optimization 
of the orbitals is equivalent to convergence to an excited state, for which the exact 
energy is not a lower bound, but for which the energy does not usually go far below 
the exact energy if orthogonality to the lower states is maintained. In the relativistic 
case, this is ensured by the application of kinetic balance 1-32-35]. 

Kinetic balance has important implications for the exponent space also. Its use 
to define the small component basis in terms of the large component basis means 
that there is only one exponent parameter space for both components. This is in 
contrast to the work of Talman, who used different exponents for large and small 
components. With kinetic balance, each basis function can be regarded as a prod- 
uct of a single Gaussian function multiplied by a 4-component vector which 
contains the angular dependence of the spinor as well as the linear variation 
parameters (spinor coefficients). This is an implicit projection onto the positive 
energy states in exponent space. The problem of collapse therefore does not arise in 
the context of exponent optimization with kinetic balance: the Hessian with respect 
to the exponents should be positive definite at convergence, corresponding to a 
minimum in the energy. This has been verified by experience. 
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The approach to basis set optimization employed in this paper is essentially the 
same as that of Feegri and Almlrf [36], employing analytic gradients and a scaled 
Newton-Raphson procedure. Here, the analytic gradient of the energy with respect 
to the natural logarithms of the basis function exponents is calculated at each point 
in the optimization process, and the Hessian is evaluated by finite differences of 
gradients. A search direction is defined by assuming the hypersurface is quadratic 
in the exponent parameter space and solving the appropriate equation. The 
Hessian is inverted by first diagonalizing it, then inverting the eigenvalues and 
back-transforming. By this means, a check can be made on the Hessian index, and 
directions corresponding to negative eigenvalues of the Hessian excluded from the 
search, or dealt with in some other manner. A minimum along the search direction 
is then located, and the procedure repeated until convergence is obtained or the 
optimization process fails. 

The method has been implemented for closed shell systems as a subprogram of 
the package GRASP [37], and makes use of both the angular momentum algebra 
packages and the numerical integration routines within the program. The formula- 
tion of the energy has been modified so that orbitals from the same shell (same 
occupation numbers and symmetry) can be derived from a single Fock matrix: thus 
we write the energy as 

E = q,I(a, a) + -2a qaqbF°(a, b) + ~ ,  9~bGk(a, b) (1) 
a = l  , b = l  , = 1  

where the (zero) diagonal term 

q~(F°(a, a) -- G°(a, a)) (2) 

has been added, and the 9~a are simply related to theftS. The reader is referred to 
Ref. [37] for definitions of the terms in the energy expression. In the construction of 
the two-electron part of the Fock matrices in the finite basis, the contraction of the 
density with the two-electron integrals has been replaced by the numerical evalu- 
ation of integrals over the appropriate potentials, with the basis functions 
tabulated on the grid used in the numerical procedures. The atomic functions a on 
the first SCF cycle are taken to be the converged numerical solutions. Thereafter 
they are constructed from the tabulated Gaussian basis functions and their coeffi- 
cients, after each SCF iteration. The method is therefore equivalent to direct SCF 
methods [38]. The two-electron Hellmann-Feynmann contributions to the gradi- 
ents may be evaluated in a similar fashion, by substituting for one of the basis 
functions its derivative with respect to the natural logarithm of its exponent. The 
derivative functions are tabulated for this purpose. Use of the converged numerical 
solutions provides an excellent starting estimate of the wave function for the finite 
basis calculations: for a basis set of good quality only a few SCF iterations are 
required to reach convergence in the energy. For numerical accuracy it was found 
necessary to increase the number of grid points over the GRASP default by a factor 
of 5, and to converge the eigenvectors to as small a threshold as possible (about 
10- lo). A Gaussian nuclear charge distribution with RMS radius (in fm) given in 
terms of the atomic mass number A by ( / , 2 ) 1 / 2  = 0.836 A 1/3 + 0.570 [39] has been 
used in all finite nucleus calculations. All DHF calculations were done with a finite 
nucleus. 

The choice of the starting set of exponents for basis set optimization is critical 
in obtaining convergence and avoiding the many local minima on the hypersurface. 
It has been noted that the inner exponents in nonrelativistic optimizations with 
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a point nucleus occur in fixed ratios, essentially independent of atomic number and 
basis set size [40]. While this behavior is not evident for the finite nucleus, there is 
still a pattern of decreasing ratios between adjacent exponents with decreasing 
exponent size among the inner exponents [41]. A simple scaling of the nonrelativ- 
istic exponents obtained in finite nucleus optimizations may thus provide a good 
starting guess for the relativistic optimization. Moreover, reducing the number of 
parameters in the initial stages of the optimization may help convergence. The 
program therefore includes an option to minimize the energy with respect to a 
scaling parameter for each angular type in the basis. 

Another important feature built into the program is the ability to force several 
sets of exponents to be equal. This will enable, for example, a common p set to be 
determined for Pl/2 and P312 spinors, or a common set determined in the valence 
space where it would be uncontracted in a molecular calculation, with different 
core exponents for Pl/2 and P3/2, or a completely different set for each spin-orbit 
component. It also permits a common exponent set for all angular types, or 
a common set for angular types of the same parity, as is used by Visser et al. [42"1. 

3 Strategy 

There are several important considerations in the task of basis set optimization. 
The most important, from the point of view of the cost of the subsequent molecular 
integral calculations, is to minimize the number of primitive functions. In doing 
this, it is important to maintain balance between the different angular symmetries. 
A balanced basis set is one in which the addition of a function to any of the 
symmetries (followed by reoptimization) yields the same amount of energy-lower- 
ing for all angular symmetries [43]. The minimization of the number of functions 
must also be weighed against the need to have a sufficient number of functions that 
there are no major deficiencies in the basis, "major deficiencies" being dependent 
on the type and quality of calculation aimed for. As noted above, the optimization 
of relativistic basis sets must observe the kinetic balance condition. For present 
purposes, it is sufficient to use this condition in the form of the relation 

{@ s) ___ {(a "p)O ~} (3) 

where {@L} and {a s} are the large and small component basis sets, respectively. 
So far the usual approach to optimization of relativistic basis sets has followed 

the lines used for nonrelativistic primitive sets. The same primitive functions are 
used for both spin-orbit components of a given ~-value in the large component 
basis, and the small component set is generated by kinetic balance; in other words 
it contains the derivatives of the large component set. For a full cartesian basis of 
Gaussian functions the total number of primitive functions in the non-relativistic 
set is 

NL = ~ n< (~ + 1)(E + 2) 
< 2 (4) 

where n< is the number of different exponents for symmetry #. The strategy above 
will then yield a relativistic basis with a total of 

N = 3NL + ~ n< (5) 
E 
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primitive functions. For  a "worst case" n 4 dependence in two-electron integral 
evaluation, this means an increase by a factor greater than 81 relative to the 
nonrelativistic case. 

The number of basis functions may be reduced by introducing so-called 
"family" basis sets. In one such approach the basis functions are optimized with the 
constraint that for the large component basis the exponents for the functions of 
(f + 2) symmetry should be a subset of the exponents for E symmetry. This leads to 
two interleaving families of exponents (for odd and even Y respectively), and the 
(~ + 2) and ~ large component functions have common small component basis 
functions of angular momentum (f + 1). The total number of basis functions in this 
approach is 

N = 2NL + ~. n6 (d + 2) +np  (6) 
6 

which is a considerable improvement over what we obtained from a simple 
application of the gradient operator to the nonrelativistic basis set. It should be 
noted that the reduction comes only in the small component set: the large compon- 
ent set is the same size as the nonrelativistic basis in the previous example. 

For  relativistic calculations there is really no requirement that the two spin- 
orbit components of a given E should have the same exponents. An alternative is 
to optimize exponents for each j-value. This yields the same set of exponents for 
sl/2 and Pl/2, for P3/2 and d3/2, etc.  The advantage of this approach lies in the fact 
that the small component corresponding to sl/~ is Px/z and vice versa, assuming 

, ,  • , ,  " 6 + 2  - ~ r  2 . . . .  here that the contaminant functions r e reqmred for strict or minimal 
kinetic balance can be represented well enough by the "regular" functions ree -~r~. 
Thus we need not worry about  imposing kinetic balance, which will be fulfilled 
automatically, and the total number of primitive functions is 

N = 2NL + ~ n6(f + 2). (7) 
6 

A further advantage of this approach derives from the need to increase the size of 
the P~/2 basis set relative to the nonrelativistic p basis set due to the behavior of the 
2pl/2 orbital close to the nucleus [-16]. In an E-based approach as described in the 
first two examples this would also lead to increases of the p3/2 large component 
space and the d3/2 small component space. In the j-based approach this feature is 
included in a natural manner. If the contaminant functions were required, the 
number of functions in a j-based approach would be similar to that for the E-based 
approach in which the extra functions needed in the core were added. 

The ultimate flexibility would be obtained by optimizing a set of exponents for 
each re-value. This would yield basis sets which would rapidly prove prohibitively 
expensive for actual molecular calculations. However, in a study like this the 
~:-based sets may be explored for pedagogical purposes. In line with the discussion 
of the E- and j-based approaches above, it will be of interest to investigate the 
properties of to-based sets dimensioned either with equal number of functions for 
each j-value or for each E-value. 

To summarize the discussion in this section and to introduce some terminology 
which will be used in the discussion of the results, we note that the basic quantum 
number on which sets of exponents are defined is ~:. These sets of exponents may be 
combined on the basis of the choice of one of the quantum numbersj  or E, or on 
a combination such as even or odd parity of E. Thus, a j-based set will combine the 
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sets for ~: = j + ½ and  x = - ( j  + ½), and  an g-based  set will combine  the sets for 
tc = # and  ~: = - g - 1. Because of these possible  combina t ions ,  the  selection of 
sets of exponen t s  for op t imiza t i on  m a y  differ f rom the d i s t r ibu t ion  of exponents  
be tween q u a n t u m  numbers .  F o r  the selection of a set of exponents  for op t imiza-  
t ion,  the t e rm "x -based  op t imiza t ion"  or  "x -op t imized"  will be used. Thus,  in a 
j - b a s e d  op t imiza t ion ,  funct ions  with the  s a m e j  value  will have c o m m o n  exponents  
which are  opt imized .  F o r  the  d i s t r ibu t ion  of exponents  between different q u a n t u m  
numbers  the  t e rm "x-d i s t r ibu ted"  will be used. A set which is E-distr ibuted,  for 
example ,  will have  the  same  n u m b e r  of exponents  for j = E - ½ as for j = E + ½. 
(Note  tha t  the  ~ value  is t ha t  of  the large  componen t :  kinetic  ba lance  takes  care  of 
the  smal l  c o m p o n e n t  set.) 

4 Results 

To d e m o n s t r a t e  the  d e v e l o p m e n t  of relat ivis t ic  basis sets, we have selected the Rn 
a tom,  and  s ta r t  with the  22s17p13d8f basis set op t imized  by  F~egri [44]. In  all 
ca lcula t ions ,  s t r ict  or  min ima l  kinet ic  ba lance  was employed;  this co r re sponds  to 
the equa l i ty  in Eq. (3). The  to ta l  energies and  the errors  in the to ta l  energy with 
respect  to the  basis  set l imi t  (i.e. the numer ica l  H F  or  D H F  value) for a number  of 
basis  sets of  this  s t ruc ture  are  r epor t ed  in Table  1. The  nonrela t iv is t ic  basis sets are  
accura te  to  a b o u t  10 mEh. Using  these basis sets in the  s t a n d a r d  way  wi thou t  
modi f ica t ion ,  i.e. using g-d is t r ibut ion ,  yields large errors.  Op t imiz ing  the relat ivist ic  
basis  set on E values  wi th  g -d i s t r ibu t ion  yields an e r ror  of 132 rnEh which shows 
tha t  the  basis  set op t imized  in this way  is no t  of the  same qual i ty  as the  nonre la t iv-  
istic basis  set. Even a x -based  op t imiza t ion  with E-dis t r ibut ion gives an e r ror  of 
86 mEh. I t  is no t  ha rd  to f ind the reason.  E x a m i n a t i o n  of the exponents  reveals  tha t  
the  Pl/2 exponen t s  are m o r e  sp read  out  t han  the P3/2 set, and  the need for ex t ra  
funct ions  in the  Pl/2 set is obvious .  The  a l te rna t ive  is to use a j -d i s t r ibu t ion  ra ther  

Table 1. Hartree-Fock and Dirac-Fock total energy of Rn atom with a 
22s17p13d8f basis set optimized in various ways 

Basis set description Total Truncation 
energy (Eh) error (Eh) 

Hartree-Fock 
NR point nucleus -- 21866.7614 0.0108 
Numerical limit - 21 866.7722 0.0000 
NR finite nucleus -- 21865.8432 0.0098 
Numerical limit - 21 865.8530 0.0000 

Dirac-Fock 
NR point nucleus E-distributed -- 23 600.1404 1.9638 
NR finite nucleus ,(-distributed - 23 600.0444 2.0598 
DF ,(-optimized ,(-distributed - 23 601.9719 0.1323 
DF M-optimized ,(-distributed - 23 602.0191 0.0856 
NR point nucleus j-distributed - 23 601.9998 0.1044 
NR finite nucleus j-distributed - 23 601.9072 0.1970 
DF j-optimized j-distributed - 23 602.0836 0.0206 
Numerical limit - 23 602.1042 0.0000 
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than an f'-distribution. Using the nonrelativistic basis sets without reoptimization 
in this way (i.e. using the non-relativistic s-exponents also for the pl/2, the non- 
relativistic p-exponents for P3/2 and d3/2, etc.) gives an order of magnitude reduc- 
tion in the error over the E-distributed basis sets. Finally, the j-optimized j- 
distributed set gives a truncation error of 21 mEh, which is much closer to the 
nonrelativistic truncation error. A x-based optimization with j-distribution proved 
impractical due to the overrepresentation in low-j components of higher C, i.e. d3/2  

and f5/2, and was not explored further. 
It is worthy of note that the differences between the numerically determined 

spinor eigenvalues and the basis set values for the j-optimized set vary by no more 
than a factor of 2 for all spinors, with values around 3 mEh, and the differences 
between the eigenvalues for the spin-orbit components of any orbital differ by only 
a few hundredths of a millihartree. This is in contrast to the other optimizations, 
where the Pl/2 spinors have discrepancies a factor of 5 to 10 larger than the other 
spinors, and as a consequence the differences between the eigenvalues for the 
spin-orbit components of an orbital, which are an estimate of the spin-orbit 
splitting, are underestimated by a considerable amount. The accuracy of the 
spin-orbit splitting is improved in light atoms such as Ne by the adoption of a 
j-distributed basis set, but for heavy atoms, the unoptimizedj-distributed set gives 
errors in the eigenvalue differences of the spin-orbit components of the order of 
a few millihartrees. 

In addition to obtaining the best possible energy, we also require that the basis 
sets be balanced, i.e. the addition of a function to any angular type with re- 
optimization of the basis gives the same lowering in energy. Given that relativistic 
effects contract the core regions of the atoms but have much smaller effects on the 
valence region, it is possible that a basis set which is balanced in a nonrelativistic 
optimization will be unbalanced in a relativistic optimization. The degree of 
balance in the Rn basis set has been determined by addition of functions to each 
space. The calculations were done for f-, j- and x-based and distributed optimiza- 
tions, and the results are summarized in Table 2-5. 

Table 2 shows that the nonrelativistic 22s17p13d8fRn set is reasonably bal- 
anced, perhaps somewhat overrepresented in the s-space, but this is due to the fact 
that the distribution was originally derived for a point nucleus. A better balance 
for a finite nucleus would be 21s18p13dSf Looking at Table 3 we see that whereas 
the 22s17p13d8fE-distribution still is reasonably balanced for s, d andforbitals,  the 
p-space is underrepresented, and in the end requires almost as many functions 
as the s-space for balance to be restored. For the j-based 22jl/z17j3/213js/z8jT/2 
distribution, Table 4 shows a much better balance. The main modification required 
to balance the set is addition of one or two functions to the ill2 and j 3 / 2  spaces, 

Table 2. Energy lowering A E  = E ,  -- E , - 1  in Eh for addition of the nth function in each symmetry in 
nonrelativistic finite nucleus basis set optimizations. Reference set is 22s17p13d8f  

s p d f 

n AE  n AE  n AE  n AE  

22 --0.00153 17 --0.00451 13 --0.00384 8 
23 --0.00056 18 --0.00281 14 --0.00138 9 

19 -- 0.00120 

-- 0.00524 
-- 0.00116 



Optimization of Gaussian basis sets for Dirac-Hartree-Fock calculations 47 

Table 3. Energy lowering AE = E, -- E,_ ~ in Eh for addition of the nth function in each symmetry in 
relativistic E-based finite nucleus basis set optimizations, Reference set is 22s17p13d8f 

s p d f 

n AE n AE n AE n AE 

23 -0.00304 18 -0.06184 14 -0.00310 9 
24 -0.00101 19 -0.02816 15 -0.00155 

20 - 0.01317 
21 - 0.00713 
22 - 0.00464 
23 - 0.00233 
24 - 0.00114 

- 0.00154 

Table 4. Energy lowering AE = E,  - E,-1  in Eh for addition of the nth function in each symmetry in 
relativistic j-based finite nucleus basis set optimizations. Reference set is 22ja/217j3/z13js/z8jT/2 

j=1/2 j=3/2 j=5/2 j=7/2 

n AE n dE  n AE n AE 

23 --0.00516 18 --0.00459 14 --0.00122 
24 -0.00251 19 -0.00205 15 --0.00042 
25 --0.00136 20 --0.00098 

9 - 0.00079 

which cover the regions most affected by relativistic contraction. Finally, Table 5 
shows that if we optimize exponents for each ~-value separately, basis set balance 
comparable to that obtained for the nonrelativistic set in Table 2 requires one or 
two more s l /2  functions, and at least four more Pi /2  functions. 

Another consideration in the optimization of basis sets is the coefficient distri- 
bution. The nonrelativistic 2 2 s l T p 1 3 d 8 f R n  set has a valence double-zeta distribu- 
tion in the s and p spaces, but addition of an extra p function changes the p space to 
triple zeta. In the attempt to obtain a balanced relativistic basis set using f- 
optimization and distribution, the p set again becomes triple-zeta in the valence 
space. In the j-optimized and distributed basis set, the P~/z space remains double- 
zeta until about 24 functions, and is thereafter triple-zeta, whereas the P3/2 space 
becomes triple-zeta with the addition of one extra function. The quality of a basis 
set for molecular calculations depends not only on the energy balance, but also on 
the coefficient distribution. Incautious use of f-optimization may introduce a set of 
different valence quality than the corresponding nonrelativistic set. Any evaluation 
of relativistic corrections based on such sets would be of dubious value. Here, 
j-optimized sets appear to provide a basis set which is more nearly consistent with 
the nonrelativistic set, both in terms of the energy balance and the valence 
coefficient distribution. 

Not  only is the coefficient distribution of importance, but the relative magni- 
tudes of the coefficients give an indication of the adequacy of the exponent set to 
describe the orbitals. In a double zeta description the significant antinode for an 
orbital is described by two Gaussians, and the coefficients for these two functions in 
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the orbital expansion should also be balanced, i.e. the coefficients should be of 
similar magnitude. If one of these coefficients for a given orbital is quite small, this 
indicates that the corresponding function has more of a spectator role, and that the 
orbital description may be closer to single zeta. In Table 6 the coefficients of the 
two Gaussians describing the outermost parts of the valence and outer core s and 
p orbitals are reported for various basis sets. Simple transfer of the nonrelativistic 
basis gives a poorer description of the valence region, as evidenced by the large 
ratio of the coefficients. #-optimization improves the valence description for the 6s, 
but cannot meet the different requirements of the 6p~/1 and 6p3/2. The j-optimized 
basis set gives valence coefficients which are the most balanced and the most 
similar to the nonrelativistic coefficients. Similarly, the 5s is not well described by 
the nonrelativistic basis sets, and requires a relativistic optimization to improve the 
description. The 5p orbitals seem to be well described by the nonrelativistic basis 
sets with either distribution, but #-optimization produces an imbalance, which is 
restored by j-optimization. Here again, j-optimized basis sets provide the best 
description of the orbitals, and one which most closely corresponds to the non- 
relativistic basis set. 

5 Conclusions 

Most available basis sets today have been optimized for nonrelativistic calcu- 
lations, even those for very heavy atoms. For high quality relativistic work this 
is an unsatisfactory situation, becoming even more so the heavier the elements 
involved are. The present study points to some possible strategies to adopt in 
the optimization of relativistic basis sets. In particular, we believe that the use of 
j-based distributions hold considerable promise for the further development of 
such basis sets. This, as we have shown, probably also provides the most economi- 
cal way of handling the problem with the Pl/2 space-a solution to which is critical 
to obtain a reliable energy from relativistic calculations, due to the great pene- 
tration of the 2p~/2 orbital. If nonrelativistic basis sets are to be used without 
modification, we recommend the use of j-based distributions rather than E-based 
distributions. For accurate spin-orbit splittings, however, and for the best balance 
of the coefficients, j-optimization appears to give the best basis sets. In molecular 
calculations, j-distributed sets would be most efficiently implemented by use of a 
2-spinor basis, either explicitly or implicitly. 

We have not considered the use of "family" basis sets here in any detail. 
Qualitatively they will be expected to perform slightly poorer than the f-based sets, 
but with a considerable saving in the number of basis functions as already pointed 
out. There are a number of variations on the theme of "family" basis sets, one of 
these being the possibility for a common set of exponents for the entire function 
space, in the manner used by Huzinaga and coworkers for their "well-tempered" 
basis sets. This would automatically provide for kinetic balance, and might also 
give increased efficiency to integral algorithms aimed specifically at this type of 
basis set. At present, molecular integral codes do not exploit kinetic balance to this 
extent, but in the future this may well turn out to be an important consideration in 
designing relativistic integral codes. 

The computer program used by us for the present investigation is unfortunately 
too slow to be used in extensive derivation of energy optimized basis sets for 
relativistic calculations. We are presently working on a new program which we 



50 K.G. Dyall, K. F~egri, Jr 

hope will be ready for p roduc t ion  in the no t  too distant  future. With properly 
optimized relativistic basis sets and  integral codes designed to take advantage  of 
the features characteristic of these sets, the field of finite basis molecular  relativistic 
calculat ions should be s t rengthened considerably. 

Acknowledgements. This project has received support from the Norwegian VISTA program and the 
Norwegian Research Council for Science and the Humanities (NAVF). KGD was supported by NASA 
Cooperative Agreement NCC2-552 with Eloret Institute and NASA contract NAS2-14031 to Eloret, 
and is grateful for support from NAVF and hospitality at the University of Oslo while the initial stage of 
this project was undertaken. 

References 

1. See the bibliographies by Pyykk6 P (1986) Lect Notes Chem 41 and (1993) 60; references later than 
these are listed below 

2. Dyall KG (1993) J Chem Phys 98:2191 
3. Dyall KG, Partridge H (1993) Chem Phys Lett 206:565 
4. Dyall KG (1993) J Chem Phys 98:9678 
5. Matsuoka O, Pisani L, Clementi E (1993) Chem Phys Lett 202:13 
6, Baeck KK, Lee YS (1994) J Chem Phys 100:2888 
7. Malli GL, Styszyfiski J (1994) J Chem Phys 101:10736 
8. Pisani L, Clementi E (1994) J Comp Chem 15:466 
9. Pisani L, Clementi E (1994) J Chem Phys 101:3079 

10. Visscher L, Visser O, Aerts PJC, Merenga H, Nieuwpoort WC (1994) Comput Phys Commun 
81:120 

11. Collins CL, Dyall KG, Schaefer III HF (1995) J Chem Phys 102:2024 
12. Visscher L, Dyall KG (1995) Chem Phys Lett 239:181 
13. Huzinaga S, Klobukowski M, Tatewaki H (1985) Can J Chem 63:1812 
14. Huzinaga S, Klobukowski M (1985) Chem Phys Lett 120:509 
15. Huzinaga S, Klobukowski M (1986) J Mol Struct THEOCHEM 135:403 
16. Matsuoka O, Okada S (1989) Chem Phys Lett 155:547 
17. Okada S, Matsuoka O (1989) J Chem Phys 91:4193 
18. Schwarz WHE, van Wezenbeck EM, Baerends EJ, Snijders JG (1989) J Phys B 22:1515 
19. Saue T, F~egri Jr K, unpublished 
20. Dyall KG, Taylor PR, F~egri Jr K, Partridge H (1991) J Chem Phys 95:2583 
21. Mark F (1986) Theor Chim Acta 70:165 
22. Lee YS, Baeck KK, McLean AD (1989) J Comp Chem 10:112 
23. Minami T, Matsuoka O (1995) Theor Cbim Acta 90:27 
24. Ishikawa Y, Baretty R, Binning Jr RC (1985) Chem Phys Lett 121:130 
25. Ishikawa Y, Quincy H (1987) Int J Quant Chem: Quantum Chemistry Symposium 

21:523 
26. Visser O, Aerts PJC, Hegarty D, Nieuwpoort WC (1987) Chem Phys Lett 134:34 
27. Matsuoka O, Huzinaga S (1987) Chem Phys Lett 140:567 
28. Malli G, Da Silva ABF, Ishikawa Y (1994) J Chem Phys 101:6829 and references therein 
29. Chandra P, Hess BA (1994) Theor Chim Acta 88:183 
30. Grant IP (1986) J Phys B 19:3187 
31. Talman JD (1986) Phys Rev Lett 57:1091 
32. Lee YS, McLean AD (1982) Studies Phys Theor Chem 21:219 
33. Stanton RE, Havriliak S (1984) J Chem Phys 81:1910 
34. Dyall KG, Grant IP, Wilson S (1984) J Phys B 17:493 
35. Ishikawa Y, Binning Jr RC, Sando KM (1983) Chem Phys Lett 101:111 
36. F~egri Jr K, Alml6f J (1986) J Comp Chem 7:396 
37. Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP (1989) Comput Phys Commun 

55:425 



Optimization of Gaussian basis sets for Dirac-Hartree-Fock calculations 51 

38. Alml6f J, F~egri Jr K, Korsell K (1982) J Comp Chem 3:385 
39. Johnson WR, Soft G (1985) At Data Nucl Data Tables 33:405 
40. Partridge H (1987) J Chem Phys 87:6643 
41. Partridge H, F~egri Jr K (1992) Theor Chim Acta 82:207 
42. Visser O, Visscher L, Aerts PJC, Nieuwpoort WC (1992) J Chem Phys 96:2910 
43. Roos B, Siegbahn P (1970) Theor Chim Acta 17:199 
44. F~egri Jr K (1987) Theor Chim Acta 72:297 


